
Sparse-Input Neural Networks for High-dimensional Nonparametric
Regression

Jean Feng 1 Noah Simon 1

Abstract
Neural networks are usually not the tool of
choice for nonparametric high-dimensional prob-
lems where the number of input features is much
larger than the number of observations. Though
neural networks can approximate complex mul-
tivariate functions, they generally require a large
number of training observations to obtain reason-
able fits, unless one can learn the appropriate net-
work structure. In this manuscript, we show that
neural networks can be applied successfully to
high-dimensional settings if the true regression
function falls in a low dimensional subspace, and
proper regularization is used. We propose fit-
ting a neural network with a sparse group lasso
penalty on the first-layer input weights, which re-
sults in a neural net that only uses a small subset
of the original features. In addition, we charac-
terize the statistical convergence of the penalized
empirical risk minimizer to the true regression
function: we show that the predictive error of
this penalized estimator only grows with the log-
arithm of the number of input features; and we
show that the weights of irrelevant features con-
verge to zero. Via simulation studies and an anal-
ysis of a genomic dataset for the production of
riboflavin, we show that these sparse-input neu-
ral networks outperform existing nonparametric
high-dimensional estimation methods when the
data has complex higher-order interactions.

1. Introduction
It is often of interest to predict a response y from a set of
inputs x. In many applications, the relationship between x
and y can be quite complex and non-linear. For low and
moderate dimensional problems, there are many methods

1University of Washington. Correspondence to: Jean Feng
<jeanfeng@u.washington.edu>.

Presented at the ICML 2017 Workshop on Principled Approaches
to Deep Learning, Sydney, Australia, 2017. Copyright 2017 by
the author(s).

that have been effective for estimating complex non-linear
relationships (e.g. kernel regression, aggregated regression
trees, neural networks; Nadaraya (1964); Watson (1964);
Breiman et al. (1984); Barron (1994)). Among these,
neural networks have been particularly effective, building
highly predictive models in complex domains where other
methods have had limited success (e.g. speech recognition,
computer vision, and natural language processing, among
others; Graves et al. (2013); Krizhevsky et al. (2012);
Szegedy et al. (2015); Socher et al. (2013); Mikolov et al.
(2013)).

With the latest technological developments in biology and
other fields, it is now very common to encounter high-
dimensional data, where the number of features p may far
exceed the number of observations n. For general prob-
lems in this setting, where the appropriate network struc-
ture is unknown, neural networks are rarely used since the
number of training samples required for good performance
is prohibitive. Instead, the popular methods in this set-
ting include the simple Lasso (Tibshirani, 1996) and its
nonparametric extensions such as Sparse Additive Models
(SpAM) (Ravikumar et al., 2007) and high-dimensional ad-
ditive models (Meier et al., 2009). These methods typically
model the data as the sum of a small number of univariate
(or very low-dimensional) functions. Unfortunately in data,
the response may depend on complex interactions between
multiple covariates, and failing to model these interactions
can result in highly biased estimates.

In this paper, we propose an extension to neural networks
that can both a) select a small subset of informative features
for estimating the response, and b) using that collection,
fit a potentially complex, non-linear response surface. Our
method, sparse-input neural networks, fits a neural network
with a mixed `1/`2 penalty, known as the sparse group
lasso penalty (Simon et al., 2013). Here groups corre-
spond to the weights connected to the same input node. The
sparse group lasso penalty encourages fitting models with
a sparse set of input features. This model can be trained
using a generalized gradient descent algorithm.

To justify the use of this method, we provide theoretical
and empirical evidence. First, we prove oracle inequalities
that give probabilistic performance guarantees of our esti-

Sparse-Input Neural Networks for High-dimensional Nonparametric Regression

mator, assuming we have reached a global minimum of our
penalized criterion. We show that if the response is best
approximated by a sparse neural network that uses only s
of the features, the prediction error of a sparse-input neural
network shrinks at a rate of Op(n−1s5/2 log2 n log(p∨n))
(here we treat the number of hidden nodes as fixed). Hence
the prediction error of sparse-input neural networks grows
slowly with the number of features, making them suitable
for high-dimensional problems. Moreover, we give an up-
per bound for the rate at which irrelevant neural network
input-weights converge to zero. Though we only present
theoretical results for the special case of the lasso, the
proof techniques can be easily extended to the sparse group
lasso. In addition, via simulation studies and a data anal-
ysis, we show that sparse-input neural networks can sig-
nificantly outperform more traditional nonparametric high-
dimensional methods when the true function is composed
of complex higher-order interaction terms.

2. Related Work
A number of other authors have applied lasso and group
lasso penalties to neural networks. That work has largely
been focused on learning network structure however, rather
than feature selection. Sun (1999) was one of the earliest
papers that fit a neural network with a lasso penalty over all
the weights. Scardapane et al. (2016) and Alvarez & Salz-
mann (2016) proposed using the sparse group lasso over
all the weights in a deep neural network in order to learn a
more compact network. The recent work by Bach (2017)
is most closely aligned to our work: he considers convex
neural networks with a single hidden layer, non-decreasing
positively homogeneous activation functions, and an un-
bounded number of hidden nodes. He shows that theoreti-
cally, a lasso penalty on the input weights of such networks
should perform well in high-dimensional settings.

The recent work in Zhang et al. (2016) examined the utility
of regularization in deep learning. The authors found that
regularization was not necessary for a neural network to
have good performance and that using an appropriate net-
work architecture led to larger decreases in generalization
error. Our results support this claim since we use the sparse
group lasso to learn the structure of the first layer.

Previously, statistical convergence rates for neural net-
works have been established when the `1-norm of the
weights are constrained (Bartlett, 1998; Anthony &
Bartlett, 2009). Here we consider the problem in its pe-
nalized form and take advantage of a sparsity assumption
to improve the convergence rates. Bach (2017) show that
the estimation error of their neural networks converges at
a slow rate of Op(n−1/2

√
log p). In our paper, we recover

fast rates with n−1 instead of n−1/2. In addition, we pro-
vide convergence rates for the weights connected to the ir-

relevant input features.

Our proofs for statistical convergence rates are inspired by
Städler et al. (2010), which considers `1-penalization for
mixture regression models. The techniques used in their
paper are relevant as neural networks can be thought of as
a mixture of regressions. Significant additional work was
required however as the identifiability condition assumed
in Städler et al. (2010) does not hold for neural networks.

3. Sparse-input neural networks
In this paper, we consider neural networks with a single
hidden layer with m hidden nodes and a linear output. The
neural network parameters are denoted η = (θ, t,β, b)
where θ ∈ Rp×m is the first-layer input weights, t ∈ Rm
is the intercept terms for the hidden nodes, β ∈ Rm is the
second-layer weights, and b ∈ R is an intercept term. Let
θj denote the weights tied to the jth hidden node and θ(j)

denote the weights tied to the jth input feature. The ac-
tivation function at each hidden node is a sigmoidal func-
tions ψ, which means that ψ satisfies limz→−∞ ψ(z) = 0
and limz→∞ ψ(z) = 1. A neural network fη maps input
x ∈ Rp to R as follows:

fη(x) =

m∑
j=1

βjψ
(
θ>j x+ tj

)
+ b. (1)

Note that tanh neural networks are included in this frame-
work since the tanh and sigmoid functions are related by a
simple transformation.

Per the usual regression framework, suppose we have ob-
servations with response yi and covariates xi for i =
1, ..., n. We propose fitting a sparse-input neural network
where we penalize the first-layer weights using a sparse
group lasso penalty and the second-layer weights using a
ridge penalty as follows:

arg min
η∈Θ

1

2n

n∑
i=1

(yi − fη(xi))
2

+ λ0‖β‖22

+ λ1‖θ‖1 + λ2

p∑
j=1

‖θ(j)‖2
(2)

where Θ ⊆ Rmp+2m+1 is a convex set.

We have three penalties in this criterion. The ridge penalty
on β serves to control the magnitude of the weights that are
not in the first layer. The combination of the group lasso
and lasso penalties is called the sparse group lasso (Simon
et al., 2013). The group lasso penalty on θ(j) encourages
sparsity at the input level. That is, it encourages the entire
vector θ(j) to be zero. The lasso penalty on θ encourages
sparsity across all the weights, so the hidden nodes will
be connected to only a few input nodes. Pictorially, (2)
encourages fitting neural networks like that in Figure 1.

Sparse-Input Neural Networks for High-dimensional Nonparametric Regression

c Input

Hidden Layer

Output

Figure 1. An example of a sparse-input neural network. The
heavy and dotted lines indicate nonzero and zero weights, re-
spectively. Each shaded oval corresponds to a group of first-layer
weights. The weights from the dark blue oval are both nonzero.
Each medium blue oval has a single nonzero weight, so they ex-
hibit element-wise sparsity. All the weights in the light blue ovals
are zero, so they exhibit group-level sparsity.

One could also consider adding a sparsity penalty to the
second layer weights. This is useful if the neural network
structure has a large number of hidden nodes that need to be
pruned away. However in the high-dimensional setting, us-
ing a small number of hidden nodes generally works well.

3.1. Learning

Sparse-input neural networks can be trained using gener-
alized gradient descent (Daubechies et al., 2004; Beck &
Teboulle, 2009; Nesterov, 2004). Though generalized gra-
dient descent was originally developed for convex prob-
lems, we can apply the recent work by Gong et al. (2013) to
find a critical point in non-convex objective functions. Here
we specialize their proposal, called GIST, to solve (2). This
algorithm is similar to that in Alvarez & Salzmann (2016).

Let Lsmooth
x,y (η) be the smooth component of the loss func-

tion in (2) as follows

Lsmooth
x,y (η) =

1

2n

n∑
i=1

(yi − fη(xi))
2

+ λ0‖β‖22. (3)

Let S(·, ·) : Rp × R 7→ Rp be the coordinate-wise soft-
thresholding operator

(S (z, c))j = sign(zj) (|zj | − c)+ . (4)

The algorithm for training a sparse-input neural network is
given in Algorithm 1. The proximal gradient step is com-
posed of three steps. The first step (6) performs a gra-
dient update step only for the smooth component of the
loss; the gradient can be computed using the standard back-
propagation algorithm. The second and third steps, (7) and
(8), are the proximal operations for the Sparse Group Lasso
(Simon et al., 2013). It performs a soft-thresholding opera-
tion followed by a soft-scaling operation on each θ(i).

The initial step size at each iteration is chosen to be some
value in [αmin, αmax]. In this paper, we simply used a

fixed value, e.g. αmin = αmax, though one can also
adaptively choose the initial step size (Barzilai & Borwein,
1988; Gong et al., 2013).

We choose the step size according to a monotone line
search criterion, which accepts the step size αk if the fol-
lowing condition is satisfied:

L(η(k,2)) ≤ L(η(k−1,2))− tαk‖η(k,2) − η(k−1,2)‖2 (5)

where L(·) is the objective function of (2) and t ∈ (0, 1).
This line search criterion guarantees that Algorithm 1 will
converge to a critical point (where the subdifferential con-
tains zero) (Gong et al., 2013).

Finally, another option for training sparse-input neural net-
works is to apply the accelerated generalized gradient de-
scent framework for non-convex objective functions devel-
oped in Ghadimi & Lan (2016). These are guaranteed to
converge to a critical point, and have accelerated rate guar-
antees.

In short, these generalized gradient descent algorithms pro-
vide an efficient way to train sparse-input neural networks.

Algorithm 1 Training sparse-input neural networks

Initialize neural network parameters η(0,2). Choose s ∈
(0, 1) and αmin, αmax such that αmax ≥ αmin > 0.
for iteration k = 1, 2, ... do
αk ∈ [αmin, αmax]
repeat

η(k,0) = η(k−1,2) − αk∇ηLsmooth
x,y (η(k−1,2)) (6)

θ(k,1) = S(θ(k,0), αkλ1) (7)

for i = 1, ..., p do

θ
(k,2)
(i) =

1− αkλ2∥∥∥θ(k,1)
(i)

∥∥∥
2


+

θ
(k,1)
(i) (8)

end for(
t(k,2),β(k,2), b(k,2)

)
=
(
t(k,0),β(k,0), b(k,0)

)
αk := sαk

until line search criterion is satisfied
end for

3.2. Tuning Hyper-parameters

There are four hyper-parameters for fitting a sparse-input
neural network: three penalty parameters and the number
of hidden nodes. The parameters should be tuned to en-
sure low generalization error of the model. Common meth-
ods for tuning hyper-parameters include cross-validation,

Sparse-Input Neural Networks for High-dimensional Nonparametric Regression

Nelder-Mead (Nelder & Mead, 1965), and Bayesian opti-
mization methods (Snoek et al., 2012).

In this paper, we use cross-validation over a grid of hyper-
parameter values. In practice, the optimal number of hid-
den nodes for high-dimensional problems tends to be small,
so only a few candidate values need be tested. Moreover,
since there are only a small number of weights in the sec-
ond layer of the neural network, the estimation error is quite
robust to different ridge penalty parameter values. So we
pre-tune the ridge penalty parameter and keep it fixed.

The most important parameters to tune are the lasso and
group lasso penalties. We found that the lasso penalty can
easily over-penalize the input weights and set everything to
zero. Thus we only use candidate values where the lasso
penalty parameter is no bigger than the group lasso penalty
parameter.

4. Theoretical Guarantees
In this section, we provide probabilistic, finite-sample up-
per bounds on the prediction error of sparse-input neural
networks. For this paper, we focus on the specific case
where the input weights are penalized by the lasso and not
the group lasso penalty. That is, we will be concerned with
the following sparse-input neural network problem:

η̂ = arg min
η∈Θ

1

2n

n∑
i=1

(yi − fη(xi))
2

+ λ‖θ‖1

where Θ =
{
η ∈ Rmp+2m+1 : ‖t‖22 + ‖β‖22 + b2 ≤ K

}
(9)

for a constant K > 0. Θ places a constraint on the norm
of the second-layer weights, which is equivalent to using
the ridge penalty. Though our results in this section are for
the special case of the lasso, the proof techniques are quite
general and can be extended to the group lasso penalty. All
of our proofs are in the Supplementary Materials.

Notice that (9) assumes that the estimator is a global min-
imizer of a non-convex objective function. Since non-
convex problems are typically computationally intractable
to solve, there is admittedly a disconnect between the com-
putational algorithm we have proposed and the theoretical
results we establish in this section. Though it is desirable to
establish theoretical properties for estimators arising from
local optima, it is difficult to characterize their behavior and
up to now, much of the theory for the Lasso depends on the
estimator being a global minimizer. We do not address this
issue and leave this problem for future research.

4.1. Problem Setup and Notation

Let PXY be the joint distribution of the covariates
X and response Y where X is sampled from X ⊆

[−Xmax, Xmax]p and PX be the marginal distribution over
X . Given n observations, we denote the empirical distribu-
tion as Pn.

Suppose the data is generated as the sum of a true function
f∗ : X ⊆ Rp 7→ R and noise ε:

Y = f∗(X) + ε

where ε is a sub-gaussian random variable with mean zero.
That is, ε satisfies for some constants Kε and σ0,

K2
ε (Ee|ε|

2/K2
ε − 1) ≤ σ2

0 . (10)

We suppose that ε is independent of X .

We use the neural network defined in (1) where the activa-
tion function is the sigmoid function ψ(z) = 1/(1 + e−z).

Next, we define a neural network equivalence class. Given
parameter η, the set of equivalent parameterizations are

EQ(η) = {η̃ ∈ Θ : fη̃(x) = fη(x)∀x ∈ X} . (11)

By Lemma 1 in Supplementary Materials, the number of
elements in EQ(η) is finite if η does not have a hidden
node with zero input weights (intercept term not included)
and no two hidden nodes have the same exact input weights
(modulo a sign flip). The proof for Lemma 1 is a straight-
forward extension of results in Albertini et al. (1993). In
fact, EQ(η) can only contain parameterizations that are
sign-flips or rotations of each other.

We suppose the set of optimal neural networks that mini-
mize the expected squared error loss is a single equivalence
class

EQ0 ≡ EQ(η0) = arg min
η∈Θ

PX‖f∗ − fη‖22, (12)

where η0 satisfies the conditions in Lemma 1 such that that
EQ0 is a finite set. In addition, suppose η0 has non-zero
weights for features with indices S ⊆ {1, ..., p} and zero
weights for the remaining features Sc. We call S the set
of relevant nodes since f∗ is well-represented by just the
nodes in S. Likewise, we call Sc the set of irrelevant nodes.
Since the equivalence class only contains parameterizations
that are rotations and sign-flips of one another, then every
element in EQ0 will have the same set of relevant nodes.
Let |S| denote the cardinality of S. In this work we are par-
ticularly interested in sparse optimal neural networks (with
small |S|). Let the minimum distance to EQ0 from any η
be defined as

d0(η) = min
η0∈EQ0

‖η − η0‖2

and the minimizer of d0(η) be denoted by

η
(η)
0 = (θ

(η)
0 , t

(η)
0 ,β

(η)
0 , b

(η)
0) ∈ arg min

η0∈EQ0

d0(η).

Sparse-Input Neural Networks for High-dimensional Nonparametric Regression

For notational shorthand, let the loss function be denoted
`η(y, x) = (y − fη(x))2. For the special case where η0 ∈
EQ0, let `0(y, x) = (y − fη0

(x))2. Using this notation,
the excess loss of a neural network η is defined as

E(η) = PXY (`η − `0). (13)

Also let θS denote the weights tied to the input nodes S
and θSc denote the weights tied to the input nodes Sc.

4.2. Results

To understand the behavior of our estimated neural network
from (9), we derive an upper bound on the combination
of its excess loss and the `1-norm of irrelevant neural net-
work weights. Our proof technique is inspired by Städler
et al. (2010); however significant adaptations were needed
to deal with the equivalence class of neural networks.

In order for our results to hold, we make the assumption
that the expected loss is locally strongly convex at all η0 ∈
EQ0. Since this only makes an assumption on the local
behavior at EQ0 and EQ0 is a finite set, this assumption is
relatively weak. More formally this assumption states:
Condition 1. There is a constant hmin > 0 that depends
on m, s, f∗ and the distribution PXY but does not depend
on p such that for all η0 ∈ EQ0,[

∇2
ηP`η(·)

]
η=η0

� hmin
[
I 0
0 0

]
(14)

where I is an (m|S|+2m+1)× (m|S|+2m+1) identity
matrix and 0 are appropriately sized zero matrices. The top
right corner of

[
∇2
ηP`η(·)

]
η=η0

corresponds to the Hessian
with respect to (θS , t,β, b).

In addition, we need the following identifiability condition.
Condition 2. For all ε > 0, there is an αε > 0 that depends
on m, s, f∗ and the distribution PXY but does not depend
on p such that

αε ≤ inf
η∈Θ
{E (η) : d0(η) ≥ ε and 2‖θSc‖1 ≤

‖θS − θ(η)
0,S‖1 + ‖(t,β, b)− (t

(η)
0 ,β

(η)
0 , b

(η)
0)‖2

}
.

Condition 2 places a lower bound on the excess loss of
neural networks outside the set of optimal neural networks
EQ0. However we only need this lower bound to apply to
neural networks where the weight of the irrelevant nodes
is dominated by the difference between η and η(η)

0 with
respect (θS , t,β, b). By restricting to this smaller set of
neural networks, it is more realistic to claim that αε is in-
dependent of p.

With the local strong convexity and identifiability condi-
tions, we have the following theorem. We use the notation
a ∨ b = max(a, b).

Theorem 1. For any λ̃ > 0 and T ≥ 1, let

Tλ̃,T =

{
{(xi, yi)}ni=1 : sup

η∈Θ
|(Pn − P) (`0 − `η)|

≤ T λ̃
[
λ̃ ∨

(∥∥∥(t,β, b)−
(
t
(η)
0 ,β

(η)
0 , b

(η)
0

)∥∥∥
2

+‖θ − θ(η)
0 ‖1

)]}
.

Suppose Conditions 1 and 2 hold. Suppose λ satisfies
3λ̃T ≤ λ ≤ aλ̃T for some constant a ≥ 3. Let η̂ be
the solution to (9). Then over the set Tλ̃,T , we have

1

2
E (η̂) +

(
λ− 2T λ̃

)
‖θ̂Sc‖1 ≤

(
2T λ̃+ λ

)2 m|S|C2
0

2
(15)

where the constants are defined as follows:

C2
0 =

1

ε0
∨ R2

αε0
(16)

ε0 =
3hmin

2C
(17)

C =
1

48
G
(

(3 + a)
√
m|S|+ 3

√
2m+ 1

)3

(18)

R = 2K + (3 + a) max
(θ0,·)∈EQ0

‖θ0‖1 (19)

G = sup
η∈Θ

max
j1,j2,j3∈{1,...,p}

∣∣∣∣ ∂3

∂ηj1∂ηj2∂ηj3
P`η(·)

∣∣∣∣ . (20)

Theorem 1 simultaneously bounds the excess loss and
‖θ̂Sc‖1. Consider the case where the identifiability con-
stant αε0 is sufficiently large such that C2

0 = ε−1
0 . Then

the above theorem states that the excess loss will be on
the order of Op(λ̃2m5/2|S|5/2) and the norm of θ̂Sc will
shrink at the rate of Op(λ̃m5/2|S|5/2). If λ̃ shrinks as the
number of samples increases, these values will go to zero.
The convergence rate of the excess risk is faster for func-
tions that are best approximated by neural networks that
are more sparse (e.g. |S| is small). The upper bound in
(15) will also be small if λ̃ and m are small. However we
must choose λ̃ carefully so that Tλ̃,T occurs with high prob-
ability. The number of hidden nodesm also must be chosen
carefully sincem determines how well we can approximate
f∗ (Barron, 1994). This comes implicitly into our rate, as
the “excess risk” is relative to the best neural net with m
hidden nodes.

In the following theorem, we show that for a particular
choice of λ̃, we can indeed ensure that Tλ̃,T has high prob-
ability. The proof relies on techniques from empirical pro-
cess theory.

Theorem 2. Let

λ̃ =
c1√
n
m3/2 log(nm)

√
log (p ∨ nm). (21)

Sparse-Input Neural Networks for High-dimensional Nonparametric Regression

Then for any T ≥ 1, we have

PrX,Y

(
Tλ̃,T

)
≥ 1− c2 log n exp

(
−T

2m log2(nm) log(p ∨ nm)

c3

)
for constants c1, c2, c3 > 0 that depend on Xmax,Kε, and
σ0.

If the identifiability constant is not too small, Theorems 1
and 2 state that if λ̃ is chosen according to (21), the excess
loss converges at the rate

Op

(
n−1m11/2|S|5/2 log2(nm) log(p ∨ nm)

)
and the `1-norm of the irrelevant weights converges at the
rate

Op

(
n−1/2m4|S|5/2 log(nm)

√
log(p ∨ nm)

)
.

Therefore the convergence rate of sparse-input neural net-
works should not drastically slow down with the number of
features p since it only depends on its logarithm.

To the best of our knowledge, our results are the first to in-
corporate sparsity into the convergence rate of the norm of
irrelevant weights. Though the convergence rates are likely
not optimal, they help us understand why we observe bet-
ter performance in sparse-input neural networks compared
to standard neural networks in our simulation studies and
data analysis. We hope to improve these convergence rate
bounds in future research. In particular, we would like to
shrink the exponent on m and |S| since these rates become
very slow for moderate values of m and |S|. In addition,
our results depend on the constants hmin and αε0 in Condi-
tions 1 and 2. In order for our rates to be useful, we would
need to make sure that these constants do not shrink too
quickly with m.

5. Simulation study
We now present a simulation study to understand how
sparse-input neural networks compare against other non-
parametric regression methods. We will consider the sce-
narios where the true function is the sum of univariate func-
tions, a complex multivariate function, and a function that
is in between these two extremes. In all the cases, the true
function is sparse and only depends on the first six vari-
ables. We compare sparse-input neural networks to five
methods, where the oracle methods are built using the first
six variables:

• neural network with a single hidden layer and a ridge
penalty on all the weights (ridge-only neural network);

• oracle ridge-only neural network;

• oracle additive univariate model of the form∑6
i=1 gi(xi) where gi are fit using additive smoothing

splines;

• oracle general multivariate model g(x1, ..., x6) where
g is fit using a 6-variate smoothing spline;

• Sparse Additive Model (SpAM), which fits an addi-
tive univariate model with a sparsity-inducing penalty
(Ravikumar et al., 2007).

The oracle methods are not competitors in practice since
they use information which will not be available; however,
they give us some idea of how well our feature selection is
working. Performance of the methods are assessed by the
mean squared error (MSE) to the true function f∗, evalu-
ated over randomly drawn covariates x in the test set.

5.1. Simulation Settings

For all of the simulations, we generated the data according
to the model y = f∗(x) + σε where ε ∼ N(0, 1) and σ is
scaled such that the signal to noise ratio is 2. We sampled
the covariates x ∈ Rp from the standard uniform distribu-
tion. We generated a training set, a validation set, and a test
set. The validation set was a quarter of the training set size
and the test set was composed of 2000 observations. The
penalty parameters in all the methods were tuned using the
validation set. For neural networks, we also tuned the num-
ber of nodes in the hidden layer (5 or 10 nodes). We use
ψ = tanh as the activation function in our neural networks.
Each simulation was repeated 20 times.

5.2. Additive univariate model

In the first scenario, we have p = 50 covariates and the true
function is the sum of univariate functions

f∗(x) = sin(2x1) + cos(5x2) + x3
3 − sin(x4) + x5 − x2

6.

Since the true model is additive, we expect that the additive
univariate oracle performs the best, followed by SpAM. As
shown in Figure 2, we see that this is indeed the case.

We find that sparse-input neural networks also perform
quite well. Thus if we are unsure if the true function is the
sum of univariate functions, a sparse-input neural network
can be a good option. In addition, we notice that the per-
formance of sparse-input neural networks tends to track the
oracle neural network and the multivariate oracle. In small
sample sizes, sparse-input neural networks and oracle neu-
ral networks perform better than the multivariate oracle, as
there is not enough data to support fitting a completely un-
structured 6-variate smoother. As the number of samples
increase, the multivariate oracle overtakes the sparse-input

Sparse-Input Neural Networks for High-dimensional Nonparametric Regression

neural network since it knows which features are truly rel-
evant. We observe similar trends in the next two scenarios.
The ridge-only neural network performs poorly in this sce-
nario. Without a sparsity-inducing penalty, it is unable to
determine which variables are relevant.

Figure 2 shows the norm of the first-layer weights in the
sparse-input neural network, stratified by those connected
to the relevant variables x1, ..., x6 and those connected to
the remaining irrelevant variables. In this example the
norm of the irrelevant weights appears to approach zero as
the number of samples increases — this is in accordance
with our theoretical results in Section 4.

5.3. Complex multivariate model

In the second simulation, we use p = 50 covariates and a
sparse, multivariate regression function

f∗(x) = sin(x1(x1 + x2)) cos(x3 + x4x5)

sin(ex5 + ex6 − x2).

Here we expect the general multivariate oracle to perform
the best in large sample sizes, which is confirmed in Fig-
ure 2. Similar to results in Section 5.2, the performance of
sparse-input neural networks nearly tracks the trajectory of
oracle neural networks and the general multivariate oracle.
As expected, the additive univariate oracle and SpAM per-
form very poorly. Their MSEs flatten out very quickly due
to the bias from assuming an additive univariate model. In
fact, we see that given a large enough training set, even a
ridge-only neural network can outperform additive univari-
ate oracle and SpAM.

Finally, we note that, as before, the norm of the irrelevant
weights in the sparse-input neural network decreases to-
ward zero as the number of samples increases.

5.4. High-dimensional additive multivariate model

Finally we consider a setting where we have a large number
of input features, p = 1000. We use a regression function
that is the sum of 3- and 4-variate functions:

f∗(x) = (x1 ∧ x2) cos(1.5x3 + 2x4) + ex5+sin(x4)x2

+ sin(x6 ∨ x3))(x5 − x1).

This places it between the simple additive univariate func-
tion in the first scenario and the complex 6-variate function
in the second scenario.

As shown in Figure 2, SpAM and sparse-input neural net-
works perform similarly in small samples and diverge at
larger sample sizes. In particular, the sparse-input neural
network starts outperforming SpAM as the oracle neural
network and general multivariate oracle start outperform-
ing the simple additive univariate oracle. This makes in-
tuitive sense: at this point the irreducible bias from the

additive univariate model begins to exceed the additional
variance one has from estimating a 6-variate function. As
before, the neural network trained with only a ridge penalty
cannot take advantage of sparsity and performs poorly.

6. Analysis of riboflavin production
We now consider a high-throughput genomic data set for
the production of riboflavin in Bacillus subtilis (Bühlmann
et al., 2014). For each of the n = 71 experimental settings,
we have gene expression profiles of p = 4088 genes as
well as standardized log-transformed riboflavin production
rates. Our goal is to predict the riboflavin production rate.
We randomly split the dataset such that test set makes up
one-fifth of the data and the rest are for training.

We compare the performance of a sparse-input neural net-
work to a ridge-penalized neural network, SpAM, and a lin-
ear model with a lasso penalty. In addition, we fit two spe-
cial cases of sparse-input neural networks: a lasso-only ver-
sion and a group-lasso-only version. The penalty parame-
ters in all methods were tuned via 5-fold cross-validation.
All the neural networks used three hidden nodes.

Table 1 shows the average performance across 30 random
splits of the dataset, as measured by their average MSE on
the test set. Sparse-input neural networks had the smallest
MSE out of all the methods, and this difference was statis-
tically significant. These results suggest that riboflavin pro-
duction rates are not well-approximated using an additive
univariate or a linear model. Instead it is better to estimate
higher-order interactions, even at such small sample sizes.
Ridge-penalized neural networks performed the worst, pre-
sumably because it was unable to determine which features
were relevant for modeling the response. The lasso- and
group-lasso-only sparse-input neural networks also did not
perform as well. Thus it is valuable to encourage sparsity
at the group-level and the level of individual weights.

From this data analysis, we conclude that sparse-input neu-
ral networks can be quite effective in practice. Even though
neural networks are not typically applied to such high-
dimensional datasets, we see here that neural networks
with proper regularization can significantly outperform tra-
ditional nonparametric regression methods.

7. Discussion
We have introduced using sparse-input neural networks as
a nonparametric regression method for high-dimensional
data, where the first-layer weights are penalized with a
sparse group lasso. When the true model is best approx-
imated by a sparse network, we show that the fitted model
using the Lasso has a prediction error that grows loga-
rithmically with the number of features. Thus sparse-

Sparse-Input Neural Networks for High-dimensional Nonparametric Regression

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.001

0.01

0.1

1

125 250 500 1000 2000
Number of Training Samples

M
S

E

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

● ●

●

●

0.001

0.01

125 250 500 1000 2000
Number of Training Samples

M
S

E

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

● ●

●

●

0.01

0.1

1

125 250 500 1000 2000 4000 8000
Number of Training Samples

M
S

E

Model
●

●

●

●

●

●

Sparse−input NN
Ridge−penalized NN
Oracle NN
Multivariate Oracle
Univariate Oracle
SpAM

●

●

●

●

●

●
● ●

● ●

0.1

0.01

0.001

125 250 500 1000 2000
Number of Training Samples

A
ve

ra
ge

 m
ag

ni
tu

de
 o

f w
ei

gh
ts

(a) Additive Univariate

● ●

●

●

●

●

●
● ● ●

0.1

0.01

0.001

1e−04

125 250 500 1000 2000
Number of Training Samples

A
ve

ra
ge

 m
ag

ni
tu

de
 o

f w
ei

gh
ts

(b) Complex Multivariate

●

●
●

● ●
●

●

● ● ● ●
●

●
●0.1

0.01

0.001

1e−04

1e−05

1e−06

125 250 500 1000 2000 4000 8000
Number of Training Samples

A
ve

ra
ge

 m
ag

ni
tu

de
 o

f w
ei

gh
ts

Weights
●

●

Irrelevant
Relevant

(c) High-Dimensional

Figure 2. Simulation results from the three scenarios: additive univariate function with p = 50 (left), a complex multivariate function
p = 50 (middle), and the sum of multivariate functions with p = 1000 (right). The top plots compares the mean squared error (MSE)
of nonparametric regression methods. The dashed lines indicate oracle models. The bottom plots show the average magnitude of the
weights from the sparse-input neural net fit, stratified into the relevant and irrelevant features.

Table 1. Average performance of the different methods for pre-
dicting riboflavin production rates in Bacillus subtilis. Standard
error given in parentheses.

Method MSE on test set

Sparse-input NN 0.1243 (0.010)
Sparse-input NN: lasso-only 0.1799 (0.021)
Sparse-input NN: group-lasso-only 0.1469 (0.016)
Ridge-penalized NN 0.2373 (0.018)
SpAM 0.1445 (0.014)
Linear model with Lasso 0.1448 (0.017)

input neural networks can be effective for modeling high-
dimensional data. The proof techniques are quite general
and can be extended to other non-smooth penalties. We
have also provided empirical evidence via simulation stud-
ies and a data analysis to show that sparse-input neural net-
works can outmatch other more traditional nonparametric
regression methods. Our results show that neural networks
can indeed be applied to high-dimensional datasets, as long
as proper regularization is applied.

One drawback of sparse-input neural networks, and neu-
ral networks in general, is that they require a significant
amount of time to train. Much of the training time is spent
on tuning the hyper-parameters and testing different initial-
izations since the objective function is non-convex. On the
other hand, since sparse additive models are convex and
have fewer hyper-parameters, they are faster to fit.

There are many directions for future research. Even though
this paper only considers sparse-input neural networks with
a single hidden layer, the estimation method can be eas-
ily extended to multiple hidden layers. It will be impor-
tant to understand if additional layers are useful in high-
dimensional settings and how sparsity-inducing penalties
can be best used to control the expressive power of deep
networks. To extend our theoretical results, we will need to
characterize how the entropy of neural networks increases
with the number of layers. In addition, we would like to
analyze the behavior of neural networks when the estima-
tor arises from a local minimum. Our theoretical results
assume the estimator is located at a global minimum, but
this is usually difficult to compute. Also our convergence
rates apply when the true function is best approximated by
a neural network with sparse first-layer weights. We are
working on the case where a sparse function is best ap-
proximated by a dense neural network. Finally we plan to
extend sparse-input neural networks to classification prob-
lems by applying a sigmoid function to the output node.

Acknowledgements
Jean Feng was supported by NIH grants DP5OD019820
and T32CA206089. Noah Simon was supported by NIH
grant DP5OD019820.

Sparse-Input Neural Networks for High-dimensional Nonparametric Regression

References
Albertini, Francesca, Sontag, Eduardo D, and Maillot, Vin-

cent. Uniqueness of weights for neural networks. Arti-
ficial Neural Networks for Speech and Vision, pp. 115–
125, 1993.

Alvarez, Jose M and Salzmann, Mathieu. Learning the
number of neurons in deep networks. In Advances in
Neural Information Processing Systems, pp. 2270–2278,
2016.

Anthony, Martin and Bartlett, Peter L. Neural network
learning: Theoretical foundations. cambridge university
press, 2009.

Bach, Francis. Breaking the curse of dimensionality with
convex neural networks. Journal of Machine Learning
Research, 18(19):1–53, 2017. URL http://jmlr.
org/papers/v18/14-546.html.

Barron, Andrew R. Approximation and estimation bounds
for artificial neural networks. Machine Learning, 14(1):
115–133, 1994.

Bartlett, Peter L. The sample complexity of pattern classi-
fication with neural networks: the size of the weights is
more important than the size of the network. IEEE trans-
actions on Information Theory, 44(2):525–536, 1998.

Barzilai, Jonathan and Borwein, Jonathan M. Two-point
step size gradient methods. IMA journal of numerical
analysis, 8(1):141–148, 1988.

Beck, Amir and Teboulle, Marc. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183–202, 2009.

Breiman, Leo, Friedman, Jerome, Stone, Charles J, and
Olshen, Richard A. Classification and regression trees.
CRC press, 1984.

Bühlmann, Peter, Kalisch, Markus, and Meier, Lukas.
High-dimensional statistics with a view toward applica-
tions in biology. Annual Review of Statistics and Its Ap-
plication, 1:255–278, 2014.

Daubechies, Ingrid, Defrise, Michel, and De Mol, Chris-
tine. An iterative thresholding algorithm for linear in-
verse problems with a sparsity constraint. Communi-
cations on pure and applied mathematics, 57(11):1413–
1457, 2004.

Ghadimi, Saeed and Lan, Guanghui. Accelerated gradi-
ent methods for nonconvex nonlinear and stochastic pro-
gramming. Mathematical Programming, 156(1-2):59–
99, 2016.

Gong, Pinghua, Zhang, Changshui, Lu, Zhaosong, Huang,
Jianhua, and Ye, Jieping. A general iterative shrinkage
and thresholding algorithm for non-convex regularized
optimization problems. In ICML (2), pp. 37–45, 2013.

Graves, Alex, Mohamed, Abdel-rahman, and Hinton, Ge-
offrey. Speech recognition with deep recurrent neu-
ral networks. In Acoustics, speech and signal process-
ing (icassp), 2013 ieee international conference on, pp.
6645–6649. IEEE, 2013.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pp. 1097–1105, 2012.

Meier, Lukas, Van de Geer, Sara, Bühlmann, Peter, et al.
High-dimensional additive modeling. The Annals of
Statistics, 37(6B):3779–3821, 2009.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado,
Greg S, and Dean, Jeff. Distributed representations of
words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pp.
3111–3119, 2013.

Nadaraya, Elizbar A. On estimating regression. Theory of
Probability & Its Applications, 9(1):141–142, 1964.

Nelder, John A and Mead, Roger. A simplex method for
function minimization. The computer journal, 7(4):308–
313, 1965.

Nesterov, Yurii. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Applied Optimization,
2004.

Ravikumar, Pradeep, Liu, Han, Lafferty, John, and Wasser-
man, Larry. Spam: Sparse additive models. In Proceed-
ings of the 20th International Conference on Neural In-
formation Processing Systems, pp. 1201–1208. Curran
Associates Inc., 2007.

Scardapane, Simone, Comminiello, Danilo, Hussain, Amir,
and Uncini, Aurelio. Group sparse regularization for
deep neural networks. arXiv preprint arXiv:1607.00485,
2016.

Simon, Noah, Friedman, Jerome, Hastie, Trevor, and Tib-
shirani, Robert. A sparse-group lasso. Journal of
Computational and Graphical Statistics, 22(2):231–245,
2013.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P.
Practical bayesian optimization of machine learning al-
gorithms. In Advances in neural information processing
systems, pp. 2951–2959, 2012.

http://jmlr.org/papers/v18/14-546.html
http://jmlr.org/papers/v18/14-546.html

Sparse-Input Neural Networks for High-dimensional Nonparametric Regression

Socher, Richard, Perelygin, Alex, Wu, Jean Y, Chuang,
Jason, Manning, Christopher D, Ng, Andrew Y, Potts,
Christopher, et al. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceed-
ings of the conference on empirical methods in natural
language processing (EMNLP), volume 1631, pp. 1642,
2013.

Städler, Nicolas, Bühlmann, Peter, and Van De Geer, Sara.
1-penalization for mixture regression models. Test, 19
(2):209–256, 2010.

Sun, Xiang. The Lasso and its implementation for neural
networks. PhD thesis, National Library of Canada= Bib-
liothèque nationale du Canada, 1999.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,
Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Du-
mitru, Vanhoucke, Vincent, and Rabinovich, Andrew.
Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

Tibshirani, Robert. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society. Series
B (Methodological), pp. 267–288, 1996.

Watson, Geoffrey S. Smooth regression analysis. Sankhyā:
The Indian Journal of Statistics, Series A, pp. 359–372,
1964.

Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Ben-
jamin, and Vinyals, Oriol. Understanding deep learn-
ing requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

